DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled versions ranging from 1.5 to 70 billion parameters to develop, experiment, and properly scale your generative AI ideas on AWS.
In this post, we demonstrate how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to deploy the distilled variations of the models also.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that utilizes support learning to improve reasoning abilities through a multi-stage training process from a DeepSeek-V3-Base structure. An essential distinguishing function is its reinforcement learning (RL) action, which was utilized to fine-tune the design's responses beyond the standard pre-training and tweak process. By including RL, DeepSeek-R1 can adapt better to user feedback and objectives, eventually boosting both significance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) method, implying it's equipped to break down intricate inquiries and reason through them in a detailed manner. This assisted thinking process permits the design to produce more precise, transparent, and detailed answers. This design combines RL-based fine-tuning with CoT capabilities, aiming to generate structured reactions while focusing on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has actually recorded the industry's attention as a flexible text-generation model that can be incorporated into different workflows such as agents, sensible reasoning and information interpretation jobs.
DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture permits activation of 37 billion criteria, allowing efficient reasoning by routing inquiries to the most relevant specialist "clusters." This method permits the model to focus on various issue domains while maintaining overall effectiveness. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to release the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the thinking capabilities of the main R1 model to more efficient architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more efficient models to imitate the habits and thinking patterns of the larger DeepSeek-R1 model, utilizing it as an instructor model.
You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend releasing this design with guardrails in place. In this blog site, we will utilize Amazon Bedrock Guardrails to introduce safeguards, avoid harmful material, and evaluate designs against essential security requirements. At the time of composing this blog site, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop multiple guardrails tailored to different use cases and apply them to the DeepSeek-R1 design, improving user experiences and standardizing security controls across your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 model, you require access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limit boost, develop a limit increase demand and connect to your account team.
Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) approvals to utilize Amazon Bedrock Guardrails. For instructions, see Set up approvals to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails enables you to present safeguards, avoid hazardous material, and assess models against crucial security criteria. You can carry out precaution for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to evaluate user inputs and model actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.
The basic flow the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After getting the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following areas show reasoning utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:
1. On the Amazon Bedrock console, choose Model catalog under Foundation designs in the navigation pane.
At the time of writing this post, you can use the InvokeModel API to invoke the design. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a company and pick the DeepSeek-R1 model.
The model detail page offers important details about the design's capabilities, rates structure, and implementation guidelines. You can discover detailed usage directions, including sample API calls and code bits for integration. The model supports various text generation tasks, consisting of material development, code generation, and concern answering, utilizing its support learning optimization and CoT reasoning capabilities.
The page likewise consists of implementation choices and licensing details to help you get going with DeepSeek-R1 in your applications.
3. To start using DeepSeek-R1, select Deploy.
You will be triggered to set up the release details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters).
5. For Number of circumstances, get in a number of circumstances (between 1-100).
6. For example type, select your circumstances type. For optimum efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised.
Optionally, you can set up advanced security and facilities settings, consisting of virtual personal cloud (VPC) networking, service function approvals, and file encryption settings. For a lot of use cases, the default settings will work well. However, for production implementations, setiathome.berkeley.edu you may wish to review these settings to align with your company's security and compliance requirements.
7. Choose Deploy to begin using the design.
When the deployment is total, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock play area.
8. Choose Open in play ground to access an interactive user interface where you can explore different prompts and adjust design parameters like temperature and maximum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for ideal outcomes. For example, content for inference.
This is an exceptional method to check out the model's reasoning and text generation capabilities before incorporating it into your applications. The play ground offers immediate feedback, helping you understand how the model reacts to various inputs and letting you fine-tune your prompts for optimal outcomes.
You can quickly check the model in the play ground through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run inference utilizing guardrails with the released DeepSeek-R1 endpoint
The following code example demonstrates how to perform reasoning utilizing a deployed DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have created the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime client, sets up inference specifications, and sends a request to produce text based on a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML services that you can deploy with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your information, and release them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart uses 2 practical techniques: using the user-friendly SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both techniques to assist you choose the technique that finest fits your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to deploy DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be triggered to develop a domain.
3. On the SageMaker Studio console, pick JumpStart in the navigation pane.
The design web browser shows available designs, with details like the service provider name and model capabilities.
4. Search for DeepSeek-R1 to view the DeepSeek-R1 design card.
Each design card shows essential details, consisting of:
- Model name
- Provider name
- Task category (for example, Text Generation).
Bedrock Ready badge (if appropriate), suggesting that this model can be signed up with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to invoke the design
5. Choose the design card to view the design details page.
The design details page includes the following details:
- The model name and supplier details. Deploy button to deploy the design. About and Notebooks tabs with detailed details
The About tab consists of crucial details, such as:
- Model description. - License details.
- Technical requirements.
- Usage guidelines
Before you release the model, it's advised to examine the model details and license terms to confirm compatibility with your use case.
6. Choose Deploy to continue with release.
7. For Endpoint name, use the instantly produced name or create a customized one.
- For Instance type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, go into the number of circumstances (default: 1). Selecting proper instance types and counts is crucial for expense and performance optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time inference is selected by default. This is enhanced for sustained traffic and low latency.
- Review all setups for precision. For this design, we strongly suggest sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
- Choose Deploy to deploy the design.
The implementation process can take numerous minutes to finish.
When deployment is total, your endpoint status will change to InService. At this moment, the model is all set to accept reasoning requests through the endpoint. You can keep an eye on the implementation development on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the implementation is complete, you can conjure up the design using a SageMaker runtime client and integrate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To get started with DeepSeek-R1 using the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the needed AWS approvals and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for reasoning programmatically. The code for deploying the design is provided in the Github here. You can clone the note pad and run from SageMaker Studio.
You can run extra requests against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and implement it as revealed in the following code:
Tidy up
To avoid undesirable charges, finish the actions in this section to tidy up your resources.
Delete the Amazon Bedrock Marketplace implementation
If you deployed the model using Amazon Bedrock Marketplace, complete the following steps:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace deployments. - In the Managed implementations area, locate the endpoint you wish to erase.
- Select the endpoint, and on the Actions menu, select Delete.
- Verify the endpoint details to make certain you're erasing the appropriate deployment: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business construct innovative services utilizing AWS services and accelerated compute. Currently, he is concentrated on establishing strategies for fine-tuning and optimizing the inference efficiency of large language designs. In his leisure time, Vivek delights in hiking, seeing movies, and trying different cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads product, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about constructing solutions that help clients accelerate their AI journey and unlock business value.