DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled versions varying from 1.5 to 70 billion parameters to construct, experiment, and properly scale your generative AI concepts on AWS.
In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to deploy the distilled versions of the designs also.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that uses reinforcement finding out to improve thinking capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. A key differentiating function is its support knowing (RL) step, which was utilized to improve the design's responses beyond the standard pre-training and tweak procedure. By including RL, DeepSeek-R1 can adjust better to user feedback and objectives, ultimately boosting both significance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) method, suggesting it's equipped to break down complex queries and factor through them in a detailed way. This guided reasoning procedure permits the model to produce more precise, transparent, and detailed responses. This model integrates RL-based fine-tuning with CoT abilities, aiming to generate structured actions while concentrating on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has captured the industry's attention as a versatile text-generation model that can be integrated into numerous workflows such as agents, rational thinking and data analysis jobs.
DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture allows activation of 37 billion criteria, enabling efficient inference by routing queries to the most relevant professional "clusters." This technique allows the design to focus on various problem domains while maintaining total effectiveness. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 design to more effective architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller, more effective models to mimic the habits and thinking patterns of the larger DeepSeek-R1 design, utilizing it as an instructor design.
You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend releasing this design with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid damaging content, and assess models against crucial security requirements. At the time of composing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop several guardrails tailored to various usage cases and use them to the DeepSeek-R1 design, improving user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To release the DeepSeek-R1 model, you require access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To request a limit boost, produce a limitation boost demand and reach out to your account team.
Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For guidelines, see Set up consents to utilize guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to introduce safeguards, avoid hazardous content, and examine designs against key safety requirements. You can carry out safety steps for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to evaluate user inputs and model actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.
The basic flow includes the following actions: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for reasoning. After getting the model's output, another guardrail check is applied. If the this final check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following sections show reasoning using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:
1. On the Amazon Bedrock console, pick Model catalog under Foundation designs in the navigation pane.
At the time of composing this post, you can utilize the InvokeModel API to invoke the design. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and select the DeepSeek-R1 model.
The model detail page supplies vital details about the model's abilities, rates structure, and execution guidelines. You can discover detailed use guidelines, including sample API calls and code bits for combination. The design supports various text generation tasks, including material development, code generation, and question answering, using its support learning optimization and CoT reasoning abilities.
The page also consists of deployment choices and licensing details to assist you start with DeepSeek-R1 in your applications.
3. To begin using DeepSeek-R1, select Deploy.
You will be triggered to set up the deployment details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters).
5. For Number of circumstances, enter a variety of circumstances (in between 1-100).
6. For Instance type, pick your circumstances type. For optimum efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is suggested.
Optionally, you can configure sophisticated security and facilities settings, consisting of virtual personal cloud (VPC) networking, service role consents, and file encryption settings. For many use cases, the default settings will work well. However, for production deployments, you may want to examine these settings to align with your organization's security and compliance requirements.
7. Choose Deploy to begin using the model.
When the deployment is total, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock playground.
8. Choose Open in playground to access an interactive user interface where you can try out different prompts and change model parameters like temperature level and maximum length.
When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimal outcomes. For example, material for reasoning.
This is an exceptional method to explore the model's thinking and text generation capabilities before incorporating it into your applications. The play area provides instant feedback, helping you comprehend how the design reacts to various inputs and letting you tweak your prompts for ideal outcomes.
You can quickly evaluate the model in the play ground through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run reasoning using guardrails with the released DeepSeek-R1 endpoint
The following code example shows how to carry out inference using a deployed DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have actually produced the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime client, configures inference specifications, and sends a request to produce text based on a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML services that you can deploy with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your information, and deploy them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart offers two hassle-free approaches: utilizing the instinctive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's check out both techniques to help you pick the approach that best fits your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to release DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be triggered to develop a domain.
3. On the SageMaker Studio console, select JumpStart in the navigation pane.
The model internet browser shows available models, with details like the provider name and design capabilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card.
Each design card reveals crucial details, consisting of:
- Model name
- Provider name
- Task category (for instance, Text Generation).
Bedrock Ready badge (if appropriate), indicating that this model can be registered with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to conjure up the model
5. Choose the model card to see the design details page.
The design details page consists of the following details:
- The design name and company details. Deploy button to deploy the design. About and Notebooks tabs with detailed details
The About tab includes essential details, such as:
- Model description. - License details.
- Technical specifications.
- Usage guidelines
Before you deploy the design, it's advised to evaluate the model details and license terms to verify compatibility with your usage case.
6. Choose Deploy to continue with deployment.
7. For Endpoint name, utilize the immediately generated name or produce a custom one.
- For Instance type ¸ pick an instance type (default: ml.p5e.48 xlarge).
- For Initial instance count, go into the variety of circumstances (default: 1). Selecting appropriate circumstances types and counts is crucial for cost and performance optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time inference is chosen by default. This is optimized for sustained traffic and low latency.
- Review all setups for precision. For this model, we strongly recommend sticking to SageMaker JumpStart default settings and making certain that network isolation remains in place.
- Choose Deploy to deploy the model.
The deployment process can take numerous minutes to complete.
When implementation is total, your endpoint status will change to InService. At this point, the design is ready to accept inference requests through the endpoint. You can monitor the implementation development on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the release is complete, you can conjure up the design utilizing a SageMaker runtime customer and incorporate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To get begun with DeepSeek-R1 using the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the essential AWS permissions and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for reasoning programmatically. The code for releasing the design is supplied in the Github here. You can clone the notebook and run from SageMaker Studio.
You can run additional demands against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and implement it as shown in the following code:
Clean up
To prevent undesirable charges, complete the steps in this area to clean up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you released the model utilizing Amazon Bedrock Marketplace, total the following steps:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, pick Marketplace deployments. - In the Managed deployments section, find the endpoint you wish to erase.
- Select the endpoint, and on the Actions menu, select Delete.
- Verify the endpoint details to make certain you're deleting the correct deployment: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies build ingenious solutions utilizing AWS services and sped up calculate. Currently, he is concentrated on developing techniques for fine-tuning and optimizing the inference performance of large language designs. In his spare time, higgledy-piggledy.xyz Vivek delights in hiking, watching motion pictures, and attempting different foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about building services that assist clients accelerate their AI journey and unlock business value.