Artificial General Intelligence
Artificial basic intelligence (AGI) is a type of synthetic intelligence (AI) that matches or wiki.tld-wars.space goes beyond human cognitive abilities throughout a wide variety of cognitive tasks. This contrasts with narrow AI, which is restricted to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that considerably goes beyond human cognitive capabilities. AGI is thought about among the definitions of strong AI.
Creating AGI is a main objective of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 survey determined 72 active AGI research and advancement jobs throughout 37 nations. [4]
The timeline for accomplishing AGI remains a subject of continuous debate amongst researchers and specialists. As of 2023, some argue that it might be possible in years or years; others maintain it might take a century or longer; a minority believe it might never be achieved; and another minority claims that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has actually revealed issues about the fast development towards AGI, suggesting it could be accomplished quicker than lots of anticipate. [7]
There is dispute on the exact meaning of AGI and concerning whether contemporary big language designs (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a typical subject in sci-fi and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many professionals on AI have actually specified that mitigating the danger of human extinction posed by AGI ought to be an international top priority. [14] [15] Others find the advancement of AGI to be too remote to present such a risk. [16] [17]
Terminology
AGI is likewise known as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level smart AI, or basic smart action. [21]
Some scholastic sources book the term "strong AI" for computer system programs that experience life or awareness. [a] On the other hand, weak AI (or narrow AI) has the ability to fix one specific issue but lacks basic cognitive capabilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the exact same sense as people. [a]
Related principles include artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical kind of AGI that is far more usually smart than humans, [23] while the idea of transformative AI connects to AI having a large effect on society, for instance, comparable to the farming or commercial revolution. [24]
A structure for classifying AGI in levels was proposed in 2023 by Google DeepMind researchers. They define five levels of AGI: emerging, proficient, expert, virtuoso, and akropolistravel.com superhuman. For instance, a qualified AGI is defined as an AI that surpasses 50% of competent adults in a vast array of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise defined however with a limit of 100%. They consider large language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have actually been proposed. Among the leading propositions is the Turing test. However, there are other well-known definitions, and some researchers disagree with the more popular approaches. [b]
Intelligence qualities
Researchers usually hold that intelligence is needed to do all of the following: [27]
reason, use method, fix puzzles, and make judgments under unpredictability
represent understanding, consisting of good sense knowledge
plan
learn
- interact in natural language
- if required, integrate these abilities in conclusion of any offered goal
Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and decision making) consider extra traits such as imagination (the capability to form unique mental images and ideas) [28] and autonomy. [29]
Computer-based systems that exhibit a number of these capabilities exist (e.g. see computational creativity, automated reasoning, decision support group, robot, evolutionary computation, smart representative). There is dispute about whether modern AI systems have them to an adequate degree.
Physical qualities
Other capabilities are considered preferable in intelligent systems, as they may affect intelligence or help in its expression. These consist of: [30]
- the ability to sense (e.g. see, hear, and so on), and - the ability to act (e.g. move and control things, modification place to check out, etc).
This consists of the ability to detect and react to hazard. [31]
Although the capability to sense (e.g. see, hear, etc) and the capability to act (e.g. relocation and manipulate objects, modification area to check out, etc) can be preferable for some intelligent systems, [30] these physical capabilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that big language models (LLMs) may already be or end up being AGI. Even from a less optimistic viewpoint on LLMs, there is no firm requirement for an AGI to have a human-like type; being a silicon-based computational system is sufficient, supplied it can process input (language) from the external world in place of human senses. This analysis lines up with the understanding that AGI has actually never ever been proscribed a specific physical embodiment and thus does not demand a capability for locomotion or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests meant to confirm human-level AGI have actually been considered, including: [33] [34]
The concept of the test is that the machine has to attempt and pretend to be a guy, by addressing questions put to it, and it will just pass if the pretence is fairly convincing. A considerable portion of a jury, who must not be expert about makers, need to be taken in by the pretence. [37]
AI-complete issues
An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to solve it, one would require to implement AGI, since the option is beyond the abilities of a purpose-specific algorithm. [47]
There are lots of issues that have been conjectured to require general intelligence to fix in addition to people. Examples include computer system vision, natural language understanding, and dealing with unanticipated circumstances while resolving any real-world issue. [48] Even a specific job like translation requires a maker to read and compose in both languages, follow the author's argument (reason), understand the context (understanding), and faithfully replicate the author's initial intent (social intelligence). All of these issues need to be fixed simultaneously in order to reach human-level device efficiency.
However, a number of these tasks can now be carried out by contemporary large language models. According to Stanford University's 2024 AI index, AI has reached human-level efficiency on numerous standards for checking out comprehension and visual thinking. [49]
History
Classical AI
Modern AI research started in the mid-1950s. [50] The first generation of AI researchers were encouraged that artificial basic intelligence was possible which it would exist in just a few decades. [51] AI pioneer Herbert A. Simon wrote in 1965: "machines will be capable, within twenty years, of doing any work a male can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists believed they could create by the year 2001. AI pioneer Marvin Minsky was a specialist [53] on the project of making HAL 9000 as reasonable as possible according to the consensus predictions of the time. He said in 1967, "Within a generation ... the issue of developing 'expert system' will considerably be solved". [54]
Several classical AI jobs, such as Doug Lenat's Cyc job (that started in 1984), and Allen Newell's Soar job, were directed at AGI.
However, in the early 1970s, it ended up being apparent that researchers had actually grossly underestimated the problem of the task. Funding agencies became hesitant of AGI and put researchers under increasing pressure to produce helpful "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that included AGI goals like "continue a casual discussion". [58] In reaction to this and the success of expert systems, both industry and federal government pumped cash into the field. [56] [59] However, self-confidence in AI amazingly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never fulfilled. [60] For the second time in twenty years, AI researchers who forecasted the imminent accomplishment of AGI had been mistaken. By the 1990s, AI scientists had a reputation for making vain promises. They ended up being hesitant to make predictions at all [d] and avoided reference of "human level" expert system for worry of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI achieved commercial success and scholastic respectability by concentrating on specific sub-problems where AI can produce proven outcomes and commercial applications, such as speech recognition and recommendation algorithms. [63] These "applied AI" systems are now used thoroughly throughout the technology market, and research study in this vein is greatly moneyed in both academic community and market. As of 2018 [update], advancement in this field was thought about an emerging trend, and a mature phase was expected to be reached in more than ten years. [64]
At the millenium, many mainstream AI researchers [65] hoped that strong AI might be established by combining programs that solve numerous sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up path to artificial intelligence will one day fulfill the standard top-down route more than half method, all set to provide the real-world proficiency and the commonsense understanding that has been so frustratingly evasive in reasoning programs. Fully intelligent makers will result when the metaphorical golden spike is driven joining the 2 efforts. [65]
However, even at the time, this was challenged. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by stating:
The expectation has typically been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow meet "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is really just one feasible route from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer will never ever be reached by this route (or vice versa) - nor is it clear why we must even attempt to reach such a level, since it looks as if getting there would just amount to uprooting our signs from their intrinsic significances (thereby simply minimizing ourselves to the functional equivalent of a programmable computer system). [66]
Modern synthetic general intelligence research
The term "artificial general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the capability to satisfy goals in a broad variety of environments". [68] This kind of AGI, characterized by the capability to maximise a mathematical definition of intelligence rather than show human-like behaviour, [69] was likewise called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The very first summer season school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and featuring a variety of guest speakers.
As of 2023 [upgrade], a small number of computer researchers are active in AGI research study, and numerous add to a series of AGI conferences. However, significantly more researchers have an interest in open-ended learning, [76] [77] which is the idea of permitting AI to continually learn and innovate like human beings do.
Feasibility
As of 2023, the advancement and potential accomplishment of AGI stays a topic of intense argument within the AI community. While traditional agreement held that AGI was a distant goal, current developments have led some researchers and industry figures to claim that early types of AGI might currently exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "devices will be capable, within twenty years, of doing any work a man can do". This prediction stopped working to come real. Microsoft co-founder Paul Allen believed that such intelligence is not likely in the 21st century since it would need "unforeseeable and essentially unforeseeable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between modern-day computing and human-level artificial intelligence is as large as the gulf between current area flight and practical faster-than-light spaceflight. [80]
A more difficulty is the absence of clarity in specifying what intelligence entails. Does it require consciousness? Must it display the capability to set objectives along with pursue them? Is it purely a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are centers such as preparation, reasoning, and causal understanding required? Does intelligence need explicitly duplicating the brain and its particular professors? Does it need emotions? [81]
Most AI scientists think strong AI can be accomplished in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of attaining strong AI. [82] [83] John McCarthy is among those who think human-level AI will be achieved, however that today level of development is such that a date can not accurately be forecasted. [84] AI specialists' views on the feasibility of AGI wax and wane. Four surveys performed in 2012 and 2013 recommended that the typical quote among professionals for when they would be 50% confident AGI would show up was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the specialists, 16.5% answered with "never" when asked the exact same concern but with a 90% confidence instead. [85] [86] Further existing AGI progress considerations can be discovered above Tests for validating human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year time frame there is a strong predisposition towards predicting the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They analyzed 95 forecasts made between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft researchers published a detailed assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it could reasonably be seen as an early (yet still incomplete) variation of a synthetic basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 exceeds 99% of humans on the Torrance tests of innovative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a considerable level of basic intelligence has currently been attained with frontier models. They wrote that reluctance to this view originates from four main reasons: a "healthy suspicion about metrics for AGI", an "ideological commitment to alternative AI theories or techniques", a "devotion to human (or biological) exceptionalism", or a "concern about the financial implications of AGI". [91]
2023 likewise marked the development of big multimodal designs (big language designs efficient in processing or generating numerous methods such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the first of a series of designs that "invest more time believing before they react". According to Mira Murati, this ability to think before reacting represents a new, extra paradigm. It improves design outputs by spending more computing power when creating the response, whereas the model scaling paradigm improves outputs by increasing the design size, training information and training calculate power. [93] [94]
An OpenAI worker, Vahid Kazemi, claimed in 2024 that the business had actually achieved AGI, specifying, "In my opinion, we have already attained AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any job", it is "much better than most human beings at many jobs." He also attended to criticisms that big language models (LLMs) merely follow predefined patterns, comparing their learning procedure to the clinical method of observing, assuming, and confirming. These statements have actually stimulated argument, as they depend on a broad and non-traditional meaning of AGI-traditionally understood as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs show amazing adaptability, they might not fully fulfill this requirement. Notably, Kazemi's comments came shortly after OpenAI got rid of "AGI" from the regards to its collaboration with Microsoft, triggering speculation about the company's tactical intentions. [95]
Timescales
Progress in expert system has traditionally gone through periods of fast development separated by durations when progress appeared to stop. [82] Ending each hiatus were basic advances in hardware, software or both to produce space for more progress. [82] [98] [99] For instance, the computer system hardware available in the twentieth century was not enough to carry out deep learning, which needs great deals of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel says that price quotes of the time needed before a really versatile AGI is developed differ from 10 years to over a century. As of 2007 [upgrade], the consensus in the AGI research study neighborhood appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI researchers have provided a large range of opinions on whether development will be this quick. A 2012 meta-analysis of 95 such viewpoints found a bias towards anticipating that the start of AGI would happen within 16-26 years for modern and historic forecasts alike. That paper has actually been criticized for how it classified viewpoints as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, substantially better than the second-best entry's rate of 26.3% (the standard approach used a weighted amount of scores from various pre-defined classifiers). [105] AlexNet was considered the preliminary ground-breaker of the existing deep knowing wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on publicly offered and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds around to a six-year-old child in first grade. A grownup concerns about 100 usually. Similar tests were carried out in 2014, with the IQ rating reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language design capable of carrying out lots of diverse jobs without particular training. According to Gary Grossman in a VentureBeat short article, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be categorized as a narrow AI system. [108]
In the exact same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI requested for changes to the chatbot to adhere to their security guidelines; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system efficient in carrying out more than 600 different jobs. [110]
In 2023, Microsoft Research published a study on an early version of OpenAI's GPT-4, competing that it showed more basic intelligence than previous AI designs and demonstrated human-level performance in jobs spanning numerous domains, such as mathematics, coding, and law. This research study stimulated a debate on whether GPT-4 might be thought about an early, insufficient version of artificial basic intelligence, highlighting the requirement for additional expedition and evaluation of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton specified that: [112]
The idea that this things could actually get smarter than individuals - a couple of people thought that, [...] But a lot of individuals believed it was method off. And I believed it was method off. I believed it was 30 to 50 years or even longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis likewise said that "The progress in the last few years has actually been quite unbelievable", and that he sees no factor why it would slow down, anticipating AGI within a years or even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within 5 years, AI would be capable of passing any test at least along with people. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI employee, estimated AGI by 2027 to be "strikingly plausible". [115]
Whole brain emulation
While the advancement of transformer models like in ChatGPT is considered the most appealing course to AGI, [116] [117] entire brain emulation can function as an alternative method. With whole brain simulation, a brain model is built by scanning and mapping a biological brain in information, and after that copying and simulating it on a computer system or another computational device. The simulation model need to be sufficiently faithful to the initial, so that it behaves in virtually the very same way as the original brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research study functions. It has been talked about in expert system research [103] as a method to strong AI. Neuroimaging technologies that could deliver the needed detailed understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of adequate quality will become offered on a similar timescale to the computing power needed to imitate it.
Early estimates
For low-level brain simulation, a very powerful cluster of computers or GPUs would be required, given the huge quantity of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on typical 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number declines with age, stabilizing by the adult years. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based on a simple switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at various quotes for the hardware required to equate to the human brain and embraced a figure of 1016 computations per second (cps). [e] (For comparison, if a "calculation" was equivalent to one "floating-point operation" - a measure used to rate present supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, achieved in 2011, while 1018 was accomplished in 2022.) He utilized this figure to predict the essential hardware would be readily available sometime between 2015 and 2025, if the rapid growth in computer power at the time of composing continued.
Current research study
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has actually established an especially detailed and openly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based methods
The synthetic nerve cell design assumed by Kurzweil and used in many present synthetic neural network applications is simple compared to biological neurons. A brain simulation would likely have to capture the comprehensive cellular behaviour of biological nerve cells, presently understood just in broad summary. The overhead presented by complete modeling of the biological, chemical, and physical information of neural behaviour (particularly on a molecular scale) would require computational powers several orders of magnitude larger than Kurzweil's estimate. In addition, the price quotes do not account for glial cells, which are understood to contribute in cognitive processes. [125]
A basic criticism of the simulated brain method originates from embodied cognition theory which asserts that human personification is an important element of human intelligence and is required to ground meaning. [126] [127] If this theory is correct, any completely functional brain design will need to incorporate more than simply the neurons (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, but it is unknown whether this would suffice.
Philosophical perspective
"Strong AI" as defined in philosophy
In 1980, theorist John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction in between 2 hypotheses about expert system: [f]
Strong AI hypothesis: A synthetic intelligence system can have "a mind" and "consciousness". Weak AI hypothesis: A synthetic intelligence system can (just) act like it thinks and has a mind and awareness.
The first one he called "strong" because it makes a more powerful declaration: it assumes something special has occurred to the maker that surpasses those capabilities that we can test. The behaviour of a "weak AI" maker would be precisely identical to a "strong AI" machine, however the latter would likewise have subjective mindful experience. This use is also typical in scholastic AI research study and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil use the term "strong AI" to indicate "human level artificial general intelligence". [102] This is not the same as Searle's strong AI, unless it is assumed that awareness is essential for human-level AGI. Academic theorists such as Searle do not believe that is the case, and to most expert system scientists the question is out-of-scope. [130]
Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can behave as if it has a mind, then there is no requirement to understand if it actually has mind - indeed, there would be no other way to tell. For AI research, Searle's "weak AI hypothesis" is equivalent to the declaration "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for given, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are two different things.
Consciousness
Consciousness can have different meanings, and some elements play substantial roles in sci-fi and the principles of expert system:
Sentience (or "extraordinary awareness"): The ability to "feel" perceptions or feelings subjectively, instead of the capability to reason about perceptions. Some philosophers, such as David Chalmers, use the term "consciousness" to refer specifically to incredible awareness, which is approximately equivalent to life. [132] Determining why and how subjective experience arises is referred to as the hard problem of awareness. [133] Thomas Nagel described in 1974 that it "feels like" something to be mindful. If we are not conscious, then it doesn't seem like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer declared that the company's AI chatbot, LaMDA, had achieved sentience, though this claim was commonly contested by other specialists. [135]
Self-awareness: To have conscious awareness of oneself as a different person, specifically to be purposely mindful of one's own thoughts. This is opposed to just being the "subject of one's thought"-an os or debugger has the ability to be "familiar with itself" (that is, to represent itself in the very same way it represents everything else)-but this is not what individuals normally imply when they utilize the term "self-awareness". [g]
These characteristics have a moral measurement. AI life would trigger concerns of well-being and legal defense, similarly to animals. [136] Other aspects of consciousness related to cognitive capabilities are likewise pertinent to the principle of AI rights. [137] Figuring out how to incorporate advanced AI with existing legal and social structures is an emerging issue. [138]
Benefits
AGI might have a wide array of applications. If oriented towards such objectives, AGI might help reduce different issues on the planet such as cravings, hardship and illness. [139]
AGI might improve productivity and efficiency in a lot of tasks. For example, in public health, AGI could accelerate medical research, especially against cancer. [140] It might take care of the elderly, [141] and democratize access to quick, top quality medical diagnostics. It might use enjoyable, inexpensive and personalized education. [141] The need to work to subsist might become outdated if the wealth produced is properly rearranged. [141] [142] This also raises the question of the place of people in a radically automated society.
AGI could also help to make rational choices, and to anticipate and prevent catastrophes. It could likewise assist to enjoy the advantages of possibly disastrous technologies such as nanotechnology or climate engineering, while avoiding the associated dangers. [143] If an AGI's main objective is to avoid existential catastrophes such as human termination (which could be tough if the Vulnerable World Hypothesis turns out to be true), [144] it could take procedures to drastically decrease the dangers [143] while lessening the effect of these steps on our lifestyle.
Risks
Existential dangers
AGI might represent multiple kinds of existential risk, which are dangers that threaten "the early termination of Earth-originating smart life or the long-term and drastic destruction of its capacity for preferable future advancement". [145] The threat of human extinction from AGI has been the subject of numerous debates, however there is likewise the possibility that the development of AGI would result in a completely problematic future. Notably, it could be used to spread and preserve the set of worths of whoever establishes it. If mankind still has ethical blind spots similar to slavery in the past, AGI might irreversibly entrench it, avoiding moral progress. [146] Furthermore, AGI might facilitate mass monitoring and indoctrination, which might be utilized to create a steady repressive worldwide totalitarian regime. [147] [148] There is also a threat for the devices themselves. If machines that are sentient or otherwise deserving of ethical factor to consider are mass developed in the future, taking part in a civilizational path that indefinitely neglects their well-being and interests might be an existential disaster. [149] [150] Considering how much AGI could enhance humanity's future and assistance minimize other existential risks, Toby Ord calls these existential dangers "an argument for proceeding with due caution", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI postures an existential threat for people, and that this risk requires more attention, is controversial however has actually been backed in 2023 by numerous public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized prevalent indifference:
So, dealing with possible futures of incalculable benefits and risks, the specialists are surely doing everything possible to ensure the finest outcome, right? Wrong. If an exceptional alien civilisation sent us a message saying, 'We'll get here in a couple of years,' would we simply respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is happening with AI. [153]
The potential fate of mankind has actually often been compared to the fate of gorillas threatened by human activities. The comparison mentions that higher intelligence enabled mankind to dominate gorillas, which are now susceptible in methods that they could not have prepared for. As an outcome, the gorilla has actually ended up being an endangered species, not out of malice, however just as a collateral damage from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to dominate mankind and that we must beware not to anthropomorphize them and interpret their intents as we would for humans. He said that people won't be "clever enough to design super-intelligent devices, yet extremely stupid to the point of providing it moronic goals with no safeguards". [155] On the other side, the principle of crucial merging recommends that nearly whatever their objectives, intelligent agents will have reasons to try to endure and obtain more power as intermediary steps to accomplishing these objectives. And that this does not need having emotions. [156]
Many scholars who are concerned about existential threat supporter for more research into resolving the "control problem" to respond to the question: what types of safeguards, algorithms, or architectures can programmers implement to increase the possibility that their recursively-improving AI would continue to act in a friendly, instead of damaging, manner after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which might cause a race to the bottom of safety precautions in order to release items before rivals), [159] and using AI in weapon systems. [160]
The thesis that AI can posture existential threat likewise has critics. Skeptics normally state that AGI is unlikely in the short-term, or that concerns about AGI distract from other issues related to present AI. [161] Former Google fraud czar Shuman Ghosemajumder thinks about that for lots of people beyond the innovation market, existing chatbots and LLMs are already perceived as though they were AGI, leading to more misconception and worry. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence changing an irrational belief in an omnipotent God. [163] Some researchers believe that the interaction campaigns on AI existential danger by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at effort at regulatory capture and to inflate interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other market leaders and scientists, released a joint statement asserting that "Mitigating the danger of termination from AI ought to be an international concern alongside other societal-scale dangers such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI estimated that "80% of the U.S. labor force might have at least 10% of their work jobs impacted by the intro of LLMs, while around 19% of employees might see at least 50% of their tasks affected". [166] [167] They consider workplace employees to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI could have a much better autonomy, ability to make decisions, to user interface with other computer tools, however likewise to control robotized bodies.
According to Stephen Hawking, the result of automation on the lifestyle will depend upon how the wealth will be redistributed: [142]
Everyone can enjoy a life of glamorous leisure if the machine-produced wealth is shared, or the majority of people can end up badly poor if the machine-owners successfully lobby versus wealth redistribution. Up until now, the pattern appears to be towards the second choice, with technology driving ever-increasing inequality
Elon Musk thinks about that the automation of society will require federal governments to adopt a universal basic earnings. [168]
See likewise
Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain AI result AI security - Research location on making AI safe and beneficial AI alignment - AI conformance to the designated goal A.I. Rising - 2018 movie directed by Lazar Bodroža Artificial intelligence Automated device knowing - Process of automating the application of machine knowing BRAIN Initiative - Collaborative public-private research study initiative revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General video game playing - Ability of artificial intelligence to play different games Generative expert system - AI system efficient in producing material in action to prompts Human Brain Project - Scientific research study task Intelligence amplification - Use of infotech to augment human intelligence (IA). Machine principles - Moral behaviours of manufactured machines. Moravec's paradox. Multi-task knowing - Solving numerous device learning jobs at the very same time. Neural scaling law - Statistical law in maker knowing. Outline of synthetic intelligence - Overview of and topical guide to synthetic intelligence. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or kind of expert system. Transfer learning - Artificial intelligence strategy. Loebner Prize - Annual AI competitors. Hardware for expert system - Hardware specially created and enhanced for expert system. Weak expert system - Form of expert system.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the academic meaning of "strong AI" and weak AI in the post Chinese room. ^ AI founder John McCarthy writes: "we can not yet identify in general what kinds of computational procedures we wish to call intelligent. " [26] (For a discussion of some definitions of intelligence used by artificial intelligence researchers, see approach of expert system.). ^ The Lighthill report specifically slammed AI's "grand goals" and led the dismantling of AI research study in England. [55] In the U.S., DARPA ended up being figured out to money only "mission-oriented direct research study, instead of fundamental undirected research". [56] [57] ^ As AI creator John McCarthy composes "it would be a terrific relief to the rest of the workers in AI if the developers of new would reveal their hopes in a more guarded type than has actually in some cases been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As specified in a standard AI textbook: "The assertion that devices could potentially act smartly (or, possibly much better, act as if they were intelligent) is called the 'weak AI' hypothesis by thinkers, and the assertion that devices that do so are in fact believing (instead of mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to perform a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to make sure that synthetic general intelligence benefits all of humankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is developing artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were identified as being active in 2020. ^ a b c "AI timelines: What do professionals in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton quits Google and warns of danger ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can prevent the bad stars from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you alter modifications you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The genuine threat is not AI itself but the way we release it. ^ "Impressed by expert system? Experts say AGI is coming next, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might present existential risks to humankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last development that mankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the danger of termination from AI must be a worldwide concern. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts warn of danger of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from producing devices that can outthink us in general methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential risk". Medium. There is no reason to fear AI as an existential danger. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as "machine intelligence with the full variety of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is changing our world - it is on everyone to make sure that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of smart qualities is based on the subjects covered by major AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reconsidered: The principle of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reconsidered: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For wiki.rolandradio.net Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real kid - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists challenge whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing everything from the bar test to AP Biology. Here's a list of difficult tests both AI versions have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's capability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and asteroidsathome.net Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced quote in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), priced quote in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software application engineers prevented the term expert system for worry of being considered as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of machine intelligence: Despite progress in machine intelligence, library.kemu.ac.ke artificial general intelligence is still a significant challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not develop into a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic artificial intelligence will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future development in expert system: A survey of professional viewpoint. In Fundamental issues of artificial intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as clever as Siri - however a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're entering the AI twilight zone in between narrow and general AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are already seeing an early example of an AGI system in the just recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is debatable, but the agreement is that it is not AGI. ... If nothing else, GPT-3 informs us there is a middle ground in between narrow and general AI. ^ Quach, Katyanna. "A developer built an AI chatbot utilizing GPT-3 that assisted a man speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can perform over 600 tasks, from playing games to controlling robotics", TechCrunch, archived from the initial on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could equal human intelligence in 'simply a few years,' says CEO of Google's primary A.I. research laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone seems to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A large variety of views in current research, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How submitting our minds to a computer system may become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (quoted in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for curiosity by the field about why a program behaves the way it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost surpass benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Gain from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, dangers, techniques (Reprinted with corrections 2017 ed.). Oxford, UK; New York, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that humans will destroy ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security danger' to Australia, Senate questions says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the ramifications of expert system - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI". The fascinating Facebook dispute between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI danger: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race threats spiralling out of control, report cautions". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over risk positioned but artificial intelligence can not be disregarded". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring worries over AI, warn researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder says big tech is lying about AI termination threat". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market effect potential of large language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of employees might see their tasks impacted by AI. These are the jobs most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we need universal standard earnings due to the fact that 'in the future, physical work will be an option'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial general intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, retrieved 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Perspective, archived from the original on 17 August 2007, retrieved 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The supreme effort is to make computer programs that can solve problems and achieve objectives in the world along with human beings. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, recovered 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Expert System", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Logical Approach, New York: Oxford University Press, archived from the original on 25 July 2009, recovered 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, retrieved 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, recovered 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, recovered 4 September 2013 - through ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, recovered 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what might be called "Dyson's Law") that "Any system basic sufficient to be understandable will not be made complex enough to act wisely, while any system complicated enough to act smartly will be too complicated to understand." (p. 197.) Computer scientist Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead basic stupid. They work, however they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from makers. For biological creatures, reason and function come from acting worldwide and experiencing the repercussions. Expert systems - disembodied, complete strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably expect that those who want to get rich from AI are going to have the interests of the rest people close at heart,' ... composes [Gary Marcus] 'We can't rely on governments driven by project financing contributions [from tech companies] to push back.' ... Marcus information the demands that residents need to make of their governments and the tech companies. They include openness on how AI systems work; settlement for people if their information [are] utilized to train LLMs (large language model) s and the right to grant this use; and the ability to hold tech companies liable for the damages they trigger by getting rid of Section 230, imposing cash penalites, and passing more stringent product liability laws ... Marcus likewise recommends ... that a new, AI-specific federal company, comparable to the FDA, the FCC, or the FTC, may supply the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... recommends ... develop [ing] an expert licensing program for engineers that would work in a similar way to medical licenses, malpractice matches, and the Hippocratic oath in medication. 'What if, like doctors,' she asks ..., 'AI engineers also promised to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in artificial intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has baffled human beings for decades, exposes the restrictions of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competition has actually exposed that although NLP (natural-language processing) models can incredible accomplishments, their capabilities are quite restricted by the quantity of context they receive. This [...] might cause [difficulties] for researchers who want to utilize them to do things such as evaluate ancient languages. Sometimes, there are couple of historical records on long-gone civilizations to work as training data for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to create fake videos identical from genuine ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we indicate sensible videos produced utilizing expert system that in fact deceive individuals, then they hardly exist. The fakes aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in general, operating in our media as counterfeited proof. Their function much better resembles that of animations, especially smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We need to avoid humanizing machine-learning designs utilized in clinical research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a machine a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the newest, buzziest systems of synthetic general intelligence are stymmied by the usual issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, presented and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead cops to overlook inconsistent proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test but revealed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at jobs that require real humanlike reasoning or an understanding of the physical and social world ... ChatGPT appeared unable to reason logically and tried to depend on its huge database of ... facts obtained from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are effective however unreliable. Rules-based systems can not handle scenarios their developers did not expect. Learning systems are restricted by the data on which they were trained. AI failures have already led to tragedy. Advanced auto-pilot functions in cars, although they carry out well in some circumstances, have driven automobiles without cautioning into trucks, concrete barriers, and parked automobiles. In the incorrect situation, AI systems go from supersmart to superdumb in an instant. When an enemy is attempting to control and hack an AI system, the risks are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: wiki.insidertoday.org James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new technologies however depend on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.