Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Sign in / Register
M
melanatedpeople
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 13
    • Issues 13
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Anita Pitcairn
  • melanatedpeople
  • Issues
  • #6

Closed
Open
Opened Apr 07, 2025 by Anita Pitcairn@anita305034548
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations varying from 1.5 to 70 billion specifications to develop, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we show how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled variations of the models also.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) developed by DeepSeek AI that utilizes support learning to boost thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A key identifying function is its support knowing (RL) action, which was used to refine the design's responses beyond the basic pre-training and tweak process. By integrating RL, DeepSeek-R1 can adjust better to user feedback and objectives, ultimately improving both importance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) technique, implying it's geared up to break down complex questions and reason through them in a detailed way. This assisted thinking process enables the model to produce more precise, transparent, and detailed responses. This design integrates RL-based fine-tuning with CoT capabilities, aiming to create structured reactions while concentrating on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has actually captured the market's attention as a flexible text-generation model that can be integrated into various workflows such as representatives, sensible thinking and data interpretation tasks.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture permits activation of 37 billion specifications, allowing effective inference by routing queries to the most relevant professional "clusters." This approach permits the model to concentrate on different issue domains while maintaining overall effectiveness. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the reasoning capabilities of the main R1 model to more effective architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more effective models to mimic the habits and thinking patterns of the larger DeepSeek-R1 model, using it as a teacher design.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend releasing this model with guardrails in location. In this blog, we will utilize Amazon Bedrock Guardrails to present safeguards, prevent harmful content, and examine designs against crucial security criteria. At the time of composing this blog site, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create multiple guardrails tailored to various usage cases and use them to the DeepSeek-R1 model, improving user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you require access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limit increase, develop a limitation increase demand and reach out to your account group.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) permissions to use Amazon Bedrock Guardrails. For guidelines, see Establish authorizations to use guardrails for material filtering.

with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to present safeguards, prevent damaging material, and pipewiki.org examine designs against key safety criteria. You can carry out safety steps for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to assess user inputs and model actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or yewiki.org the API. For the example code to develop the guardrail, see the GitHub repo.

The basic flow includes the following steps: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After getting the design's output, another guardrail check is used. If the output passes this final check, it's returned as the final result. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it happened at the input or output stage. The examples showcased in the following areas show inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, select Model catalog under Foundation designs in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a service provider and pick the DeepSeek-R1 model.

The design detail page offers essential details about the design's abilities, prices structure, and application standards. You can discover detailed usage directions, consisting of sample API calls and code snippets for combination. The design supports numerous text generation tasks, surgiteams.com consisting of material production, code generation, and concern answering, using its support finding out optimization and CoT thinking capabilities. The page also includes deployment choices and licensing details to assist you begin with DeepSeek-R1 in your applications. 3. To begin using DeepSeek-R1, choose Deploy.

You will be triggered to configure the deployment details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of circumstances, go into a number of circumstances (in between 1-100). 6. For Instance type, select your circumstances type. For optimum efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended. Optionally, you can set up innovative security and infrastructure settings, consisting of virtual private cloud (VPC) networking, service role consents, and encryption settings. For the majority of use cases, the default settings will work well. However, for production deployments, you may want to evaluate these settings to align with your company's security and compliance requirements. 7. Choose Deploy to start utilizing the design.

When the deployment is complete, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock playground. 8. Choose Open in play ground to access an interactive interface where you can try out various triggers and change design criteria like temperature and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimum outcomes. For instance, material for reasoning.

This is an exceptional way to check out the model's reasoning and text generation abilities before incorporating it into your applications. The play area offers instant feedback, helping you comprehend how the design reacts to various inputs and letting you fine-tune your triggers for optimum results.

You can quickly test the design in the playground through the UI. However, to invoke the released design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning using guardrails with the deployed DeepSeek-R1 endpoint

The following code example shows how to carry out inference using a deployed DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have developed the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime customer, configures reasoning specifications, and sends out a request to produce text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML services that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart provides 2 convenient approaches: utilizing the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both techniques to assist you choose the technique that best matches your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be prompted to develop a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The design browser shows available models, with details like the supplier name and model abilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card. Each model card reveals crucial details, including:

- Model name

  • Provider name
  • Task classification (for instance, Text Generation). Bedrock Ready badge (if relevant), showing that this design can be registered with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to conjure up the model

    5. Choose the design card to see the design details page.

    The design details page includes the following details:

    - The model name and service provider details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab includes crucial details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage guidelines

    Before you release the design, it's suggested to review the model details and license terms to validate compatibility with your usage case.

    6. Choose Deploy to proceed with deployment.

    7. For Endpoint name, utilize the immediately produced name or produce a custom-made one.
  1. For example type ¸ select an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, go into the number of circumstances (default: 1). Selecting proper instance types and counts is essential for expense and efficiency optimization. Monitor your deployment to change these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for precision. For this model, we strongly recommend adhering to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to deploy the design.

    The implementation process can take numerous minutes to finish.

    When release is complete, your endpoint status will change to InService. At this moment, the design is prepared to accept inference demands through the endpoint. You can monitor the implementation progress on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the implementation is total, you can conjure up the model using a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the required AWS approvals and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for reasoning programmatically. The code for deploying the design is provided in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Tidy up

    To avoid undesirable charges, finish the actions in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you deployed the model utilizing Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace implementations.
  5. In the Managed implementations area, locate the endpoint you want to delete.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're deleting the right implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies develop ingenious options using AWS services and accelerated compute. Currently, he is focused on developing techniques for fine-tuning and optimizing the reasoning efficiency of big language designs. In his free time, Vivek enjoys hiking, seeing motion pictures, and attempting different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and wiki.rolandradio.net Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about building options that assist customers accelerate their AI journey and unlock business value.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: anita305034548/melanatedpeople#6