Artificial General Intelligence
Artificial general intelligence (AGI) is a kind of expert system (AI) that matches or goes beyond human cognitive abilities across a wide range of cognitive tasks. This contrasts with narrow AI, which is limited to particular tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that greatly exceeds human cognitive capabilities. AGI is thought about among the definitions of strong AI.
Creating AGI is a main goal of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 study identified 72 active AGI research study and advancement projects throughout 37 nations. [4]
The timeline for achieving AGI stays a topic of ongoing argument among scientists and specialists. As of 2023, some argue that it may be possible in years or years; others keep it may take a century or longer; a minority believe it might never ever be attained; and another minority claims that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has actually revealed issues about the fast progress towards AGI, recommending it might be achieved sooner than numerous anticipate. [7]
There is dispute on the exact definition of AGI and concerning whether modern-day large language designs (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a typical subject in science fiction and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many professionals on AI have actually specified that reducing the threat of human termination postured by AGI needs to be an international priority. [14] [15] Others discover the advancement of AGI to be too remote to provide such a danger. [16] [17]
Terminology
AGI is also called strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level intelligent AI, or general intelligent action. [21]
Some academic sources reserve the term "strong AI" for computer system programs that experience life or consciousness. [a] In contrast, weak AI (or narrow AI) has the ability to fix one particular problem however does not have basic cognitive capabilities. [22] [19] Some academic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the exact same sense as humans. [a]
Related concepts consist of artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical kind of AGI that is much more usually intelligent than humans, [23] while the concept of transformative AI associates with AI having a large effect on society, for instance, comparable to the agricultural or commercial transformation. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify 5 levels of AGI: emerging, competent, professional, virtuoso, users.atw.hu and superhuman. For instance, a skilled AGI is specified as an AI that outperforms 50% of proficient grownups in a wide variety of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly specified however with a limit of 100%. They think about big language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have actually been proposed. One of the leading propositions is the Turing test. However, there are other well-known meanings, and some researchers disagree with the more popular approaches. [b]
Intelligence traits
Researchers typically hold that intelligence is needed to do all of the following: [27]
factor, usage technique, resolve puzzles, photorum.eclat-mauve.fr and make judgments under uncertainty
represent understanding, consisting of good sense understanding
plan
find out
- interact in natural language
- if required, incorporate these skills in completion of any offered goal
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and choice making) consider additional characteristics such as creativity (the ability to form unique mental images and concepts) [28] and autonomy. [29]
Computer-based systems that exhibit much of these abilities exist (e.g. see computational creativity, automated thinking, decision support system, robotic, evolutionary computation, smart representative). There is argument about whether modern AI systems have them to an appropriate degree.
Physical traits
Other capabilities are thought about preferable in smart systems, as they may affect intelligence or help in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, etc), and - the capability to act (e.g. relocation and control objects, change area to explore, and so on).
This consists of the ability to spot and react to danger. [31]
Although the ability to sense (e.g. see, hear, and so on) and the capability to act (e.g. move and manipulate items, change place to check out, and so on) can be preferable for some intelligent systems, [30] these physical capabilities are not strictly needed for an entity to qualify as AGI-particularly under the thesis that big language designs (LLMs) might currently be or end up being AGI. Even from a less optimistic viewpoint on LLMs, there is no company requirement for an AGI to have a human-like type; being a silicon-based computational system is sufficient, offered it can process input (language) from the external world in place of human senses. This interpretation aligns with the understanding that AGI has actually never been proscribed a specific physical personification and thus does not demand a capacity for mobility or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests indicated to verify human-level AGI have actually been considered, including: [33] [34]
The concept of the test is that the maker has to attempt and pretend to be a male, by answering concerns put to it, and it will only pass if the pretence is reasonably persuading. A substantial part of a jury, who need to not be expert about devices, should be taken in by the pretence. [37]
AI-complete problems
An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to fix it, one would require to implement AGI, because the option is beyond the abilities of a purpose-specific algorithm. [47]
There are many problems that have been conjectured to need basic intelligence to resolve as well as people. Examples include computer vision, natural language understanding, and dealing with unexpected scenarios while fixing any real-world problem. [48] Even a specific task like translation needs a maker to check out and write in both languages, follow the author's argument (factor), understand the context (understanding), and faithfully reproduce the author's initial intent (social intelligence). All of these problems require to be solved concurrently in order to reach human-level machine efficiency.
However, much of these tasks can now be performed by contemporary big language models. According to Stanford University's 2024 AI index, AI has reached human-level performance on lots of standards for checking out understanding and visual thinking. [49]
History
Classical AI
Modern AI research began in the mid-1950s. [50] The first generation of AI researchers were convinced that synthetic basic intelligence was possible which it would exist in just a few years. [51] AI leader Herbert A. Simon composed in 1965: "makers will be capable, within twenty years, of doing any work a guy can do." [52]
Their forecasts were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists believed they might create by the year 2001. AI pioneer Marvin Minsky was a specialist [53] on the task of making HAL 9000 as reasonable as possible according to the agreement forecasts of the time. He said in 1967, "Within a generation ... the issue of creating 'expert system' will significantly be solved". [54]
Several classical AI projects, such as Doug Lenat's Cyc project (that started in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it ended up being apparent that researchers had actually grossly undervalued the difficulty of the project. Funding companies became doubtful of AGI and put scientists under increasing pressure to produce useful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI goals like "continue a casual conversation". [58] In response to this and the success of expert systems, both industry and federal government pumped money into the field. [56] [59] However, self-confidence in AI stunningly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never fulfilled. [60] For the 2nd time in twenty years, AI scientists who predicted the imminent accomplishment of AGI had been misinterpreted. By the 1990s, AI researchers had a credibility for making vain guarantees. They ended up being unwilling to make forecasts at all [d] and avoided mention of "human level" expert system for worry of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI achieved business success and academic respectability by concentrating on particular sub-problems where AI can produce verifiable outcomes and commercial applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now used extensively throughout the innovation market, and research in this vein is greatly moneyed in both academic community and market. As of 2018 [upgrade], development in this field was thought about an emerging pattern, and a fully grown stage was anticipated to be reached in more than ten years. [64]
At the turn of the century, numerous mainstream AI researchers [65] hoped that strong AI might be established by combining programs that fix numerous sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up path to expert system will one day satisfy the traditional top-down route over half method, ready to provide the real-world competence and the commonsense knowledge that has actually been so frustratingly elusive in thinking programs. Fully smart machines will result when the metaphorical golden spike is driven joining the 2 efforts. [65]
However, even at the time, this was contested. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:
The expectation has actually often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper are legitimate, then this expectation is hopelessly modular and there is really just one practical route from sense to symbols: from the ground up. A free-floating symbolic level like the software level of a computer system will never be reached by this route (or vice versa) - nor is it clear why we must even try to reach such a level, because it looks as if arriving would just total up to uprooting our symbols from their intrinsic meanings (consequently simply lowering ourselves to the practical equivalent of a programmable computer). [66]
Modern synthetic general intelligence research
The term "artificial general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the implications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent maximises "the ability to satisfy objectives in a wide variety of environments". [68] This type of AGI, identified by the ability to increase a mathematical meaning of intelligence rather than exhibit human-like behaviour, [69] was likewise called universal expert system. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and initial results". The first summertime school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and featuring a variety of visitor lecturers.
Since 2023 [update], a small number of computer scientists are active in AGI research, and many add to a series of AGI conferences. However, progressively more researchers are interested in open-ended learning, [76] [77] which is the idea of enabling AI to continually learn and innovate like human beings do.
Feasibility
As of 2023, the advancement and prospective achievement of AGI remains a topic of intense dispute within the AI neighborhood. While conventional consensus held that AGI was a remote objective, recent developments have led some scientists and industry figures to declare that early kinds of AGI may already exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "devices will be capable, within twenty years, of doing any work a man can do". This prediction stopped working to come true. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century since it would require "unforeseeable and fundamentally unforeseeable developments" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between modern-day computing and human-level expert system is as broad as the gulf in between existing area flight and practical faster-than-light spaceflight. [80]
A more difficulty is the absence of clearness in specifying what intelligence involves. Does it require awareness? Must it show the ability to set objectives in addition to pursue them? Is it simply a matter of scale such that if model sizes increase adequately, intelligence will emerge? Are facilities such as planning, reasoning, and causal understanding required? Does intelligence require explicitly reproducing the brain and its specific faculties? Does it require feelings? [81]
Most AI scientists believe strong AI can be attained in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of accomplishing strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be accomplished, however that the present level of progress is such that a date can not properly be forecasted. [84] AI professionals' views on the feasibility of AGI wax and subside. Four surveys carried out in 2012 and 2013 recommended that the average price quote among specialists for when they would be 50% positive AGI would arrive was 2040 to 2050, depending on the survey, with the mean being 2081. Of the professionals, 16.5% answered with "never" when asked the exact same concern but with a 90% self-confidence rather. [85] [86] Further existing AGI development factors to consider can be found above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year time frame there is a strong predisposition towards predicting the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They examined 95 predictions made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft scientists released an in-depth evaluation of GPT-4. They concluded: "Given the breadth and utahsyardsale.com depth of GPT-4's capabilities, we think that it could fairly be viewed as an early (yet still insufficient) variation of an artificial general intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outshines 99% of human beings on the Torrance tests of creative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of general intelligence has currently been attained with frontier models. They wrote that unwillingness to this view comes from four main reasons: a "healthy suspicion about metrics for AGI", an "ideological dedication to alternative AI theories or strategies", a "dedication to human (or biological) exceptionalism", or a "issue about the economic ramifications of AGI". [91]
2023 likewise marked the development of big multimodal designs (big language models capable of processing or creating multiple methods such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the very first of a series of designs that "spend more time believing before they react". According to Mira Murati, this ability to believe before responding represents a new, additional paradigm. It improves model outputs by investing more computing power when generating the response, whereas the model scaling paradigm improves outputs by increasing the model size, training information and training compute power. [93] [94]
An OpenAI staff member, Vahid Kazemi, claimed in 2024 that the company had actually accomplished AGI, mentioning, "In my viewpoint, we have already attained AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any task", it is "much better than most people at many jobs." He likewise resolved criticisms that large language designs (LLMs) simply follow predefined patterns, comparing their knowing process to the clinical technique of observing, assuming, and verifying. These declarations have actually sparked debate, as they depend on a broad and unconventional meaning of AGI-traditionally comprehended as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs demonstrate exceptional versatility, they may not totally meet this requirement. Notably, Kazemi's remarks came shortly after OpenAI eliminated "AGI" from the terms of its collaboration with Microsoft, prompting speculation about the business's strategic objectives. [95]
Timescales
Progress in expert system has historically gone through durations of rapid development separated by durations when progress appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software or both to create space for more progress. [82] [98] [99] For instance, the hardware available in the twentieth century was not adequate to implement deep learning, which requires big numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that price quotes of the time needed before a really flexible AGI is developed differ from 10 years to over a century. As of 2007 [update], the consensus in the AGI research community seemed to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI scientists have actually offered a wide variety of opinions on whether progress will be this fast. A 2012 meta-analysis of 95 such opinions discovered a bias towards predicting that the beginning of AGI would occur within 16-26 years for modern and historical forecasts alike. That paper has actually been slammed for how it categorized opinions as expert or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, considerably much better than the second-best entry's rate of 26.3% (the traditional method utilized a weighted sum of ratings from various pre-defined classifiers). [105] AlexNet was regarded as the initial ground-breaker of the existing deep learning wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on openly available and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds around to a six-year-old kid in very first grade. A grownup comes to about 100 usually. Similar tests were carried out in 2014, with the IQ score reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model efficient in performing many varied tasks without particular training. According to Gary Grossman in a VentureBeat post, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]
In the exact same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested for changes to the chatbot to adhere to their safety standards; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system efficient in carrying out more than 600 various jobs. [110]
In 2023, Microsoft Research released a study on an early variation of OpenAI's GPT-4, competing that it exhibited more basic intelligence than previous AI models and showed human-level performance in tasks covering multiple domains, such as mathematics, coding, and law. This research study triggered an argument on whether GPT-4 could be thought about an early, insufficient version of synthetic general intelligence, stressing the requirement for additional exploration and examination of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton stated that: [112]
The idea that this stuff could actually get smarter than people - a few people thought that, [...] But many people believed it was method off. And I believed it was way off. I believed it was 30 to 50 years or perhaps longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis similarly stated that "The development in the last couple of years has been pretty amazing", and that he sees no reason that it would decrease, anticipating AGI within a years and even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within five years, AI would be capable of passing any test at least in addition to human beings. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI staff member, estimated AGI by 2027 to be "noticeably possible". [115]
Whole brain emulation
While the development of transformer models like in ChatGPT is considered the most promising course to AGI, [116] [117] whole brain emulation can serve as an alternative approach. With entire brain simulation, a brain model is constructed by scanning and mapping a biological brain in information, and after that copying and imitating it on a computer system or another computational device. The simulation design must be sufficiently devoted to the original, so that it acts in practically the same method as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research study purposes. It has actually been gone over in expert system research study [103] as an approach to strong AI. Neuroimaging innovations that might deliver the needed detailed understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of enough quality will end up being offered on a comparable timescale to the computing power needed to emulate it.
Early approximates
For low-level brain simulation, a very powerful cluster of computers or GPUs would be needed, given the huge quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by the adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based on a simple switch design for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at different estimates for the hardware required to equate to the human brain and adopted a figure of 1016 computations per second (cps). [e] (For contrast, if a "calculation" was equivalent to one "floating-point operation" - a measure utilized to rate existing supercomputers - then 1016 "calculations" would be equivalent to 10 petaFLOPS, achieved in 2011, while 1018 was attained in 2022.) He utilized this figure to predict the needed hardware would be offered sometime in between 2015 and 2025, if the exponential development in computer system power at the time of writing continued.
Current research
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually established a particularly comprehensive and openly available atlas of the human brain. [124] In 2023, researchers from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based methods
The artificial neuron model presumed by Kurzweil and used in lots of current synthetic neural network executions is simple compared to biological nerve cells. A brain simulation would likely need to capture the in-depth cellular behaviour of biological nerve cells, currently understood only in broad summary. The overhead introduced by complete modeling of the biological, chemical, and physical details of neural behaviour (particularly on a molecular scale) would need computational powers several orders of magnitude bigger than Kurzweil's price quote. In addition, the quotes do not account for glial cells, which are known to contribute in cognitive procedures. [125]
A basic criticism of the simulated brain method stems from embodied cognition theory which asserts that human embodiment is an important element of human intelligence and is essential to ground significance. [126] [127] If this theory is appropriate, any completely practical brain model will need to include more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an option, but it is unknown whether this would suffice.
Philosophical point of view
"Strong AI" as specified in philosophy
In 1980, theorist John Searle created the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference between two hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness". Weak AI hypothesis: An expert system system can (only) imitate it thinks and has a mind and awareness.
The very first one he called "strong" since it makes a stronger declaration: it assumes something special has actually occurred to the maker that exceeds those capabilities that we can evaluate. The behaviour of a "weak AI" maker would be specifically identical to a "strong AI" device, but the latter would likewise have subjective mindful experience. This use is likewise typical in academic AI research and books. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil use the term "strong AI" to mean "human level synthetic basic intelligence". [102] This is not the like Searle's strong AI, unless it is assumed that consciousness is necessary for human-level AGI. Academic philosophers such as Searle do not think that is the case, and to most expert system researchers the concern is out-of-scope. [130]
Mainstream AI is most thinking about how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no need to know if it actually has mind - certainly, there would be no other way to tell. For AI research, Searle's "weak AI hypothesis" is equivalent to the declaration "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for given, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are two various things.
Consciousness
Consciousness can have different significances, and some aspects play significant functions in science fiction and the ethics of expert system:
Sentience (or "extraordinary awareness"): The ability to "feel" understandings or feelings subjectively, as opposed to the ability to factor about perceptions. Some philosophers, such as David Chalmers, use the term "consciousness" to refer specifically to incredible consciousness, which is roughly equivalent to sentience. [132] Determining why and how subjective experience arises is called the tough issue of consciousness. [133] Thomas Nagel discussed in 1974 that it "seems like" something to be mindful. If we are not mindful, then it doesn't seem like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer claimed that the business's AI chatbot, LaMDA, had attained sentience, though this claim was extensively challenged by other professionals. [135]
Self-awareness: To have conscious awareness of oneself as a separate individual, especially to be consciously familiar with one's own ideas. This is opposed to just being the "topic of one's believed"-an operating system or debugger is able to be "aware of itself" (that is, to represent itself in the same way it represents whatever else)-but this is not what individuals normally mean when they utilize the term "self-awareness". [g]
These traits have a moral dimension. AI life would trigger issues of welfare and legal security, similarly to animals. [136] Other elements of awareness associated to cognitive capabilities are likewise appropriate to the principle of AI rights. [137] Figuring out how to incorporate sophisticated AI with existing legal and social structures is an emerging concern. [138]
Benefits
AGI could have a variety of applications. If oriented towards such goals, AGI could assist reduce various problems on the planet such as cravings, poverty and health issue. [139]
AGI could enhance productivity and effectiveness in most jobs. For instance, in public health, AGI might accelerate medical research, notably versus cancer. [140] It might take care of the senior, [141] and democratize access to quick, top quality medical diagnostics. It might use fun, inexpensive and individualized education. [141] The need to work to subsist might end up being obsolete if the wealth produced is properly rearranged. [141] [142] This likewise raises the question of the place of humans in a significantly automated society.
AGI could likewise help to make reasonable decisions, and to anticipate and prevent catastrophes. It could likewise assist to profit of possibly disastrous innovations such as nanotechnology or climate engineering, while preventing the associated dangers. [143] If an AGI's main goal is to avoid existential disasters such as human termination (which could be challenging if the Vulnerable World Hypothesis ends up being true), [144] it might take steps to considerably lower the threats [143] while decreasing the impact of these steps on our quality of life.
Risks
Existential threats
AGI might represent numerous types of existential threat, which are dangers that threaten "the early termination of Earth-originating smart life or the irreversible and drastic damage of its capacity for preferable future development". [145] The risk of human extinction from AGI has actually been the subject of many debates, but there is likewise the possibility that the advancement of AGI would lead to a completely problematic future. Notably, it might be used to spread and protect the set of worths of whoever establishes it. If humankind still has moral blind areas comparable to slavery in the past, AGI may irreversibly entrench it, avoiding ethical development. [146] Furthermore, AGI might help with mass surveillance and indoctrination, which might be used to create a stable repressive worldwide totalitarian program. [147] [148] There is also a danger for the makers themselves. If machines that are sentient or otherwise worthy of moral factor to consider are mass developed in the future, participating in a civilizational course that indefinitely ignores their well-being and interests could be an existential disaster. [149] [150] Considering how much AGI could improve mankind's future and help decrease other existential dangers, Toby Ord calls these existential threats "an argument for continuing with due care", not for "abandoning AI". [147]
Risk of loss of control and human extinction
The thesis that AI postures an existential risk for human beings, which this danger requires more attention, is questionable however has been endorsed in 2023 by numerous public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized prevalent indifference:
So, facing possible futures of enormous advantages and risks, the professionals are surely doing everything possible to make sure the best result, right? Wrong. If a superior alien civilisation sent us a message stating, 'We'll show up in a few decades,' would we just reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]
The prospective fate of humanity has often been compared to the fate of gorillas threatened by human activities. The comparison specifies that greater intelligence allowed humankind to control gorillas, which are now vulnerable in manner ins which they could not have prepared for. As a result, the gorilla has actually become a threatened types, not out of malice, however merely as a civilian casualties from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to control humankind and that we must beware not to anthropomorphize them and translate their intents as we would for humans. He stated that people won't be "wise sufficient to design super-intelligent machines, yet ridiculously silly to the point of providing it moronic objectives without any safeguards". [155] On the other side, the principle of critical convergence recommends that practically whatever their goals, smart agents will have factors to attempt to survive and obtain more power as intermediary steps to attaining these objectives. And that this does not need having feelings. [156]
Many scholars who are concerned about existential danger advocate for more research into solving the "control issue" to answer the concern: what kinds of safeguards, algorithms, or architectures can developers carry out to increase the probability that their recursively-improving AI would continue to behave in a friendly, rather than destructive, way after it reaches superintelligence? [157] [158] Solving the control problem is made complex by the AI arms race (which might lead to a race to the bottom of security precautions in order to launch products before competitors), [159] and making use of AI in weapon systems. [160]
The thesis that AI can present existential danger also has critics. Skeptics normally say that AGI is unlikely in the short-term, or that issues about AGI sidetrack from other problems related to current AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for lots of people outside of the innovation market, existing chatbots and LLMs are already viewed as though they were AGI, causing additional misunderstanding and worry. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence replacing an unreasonable belief in an omnipotent God. [163] Some scientists think that the communication campaigns on AI existential threat by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at effort at regulatory capture and to pump up interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other industry leaders and scientists, issued a joint statement asserting that "Mitigating the risk of termination from AI should be a worldwide concern along with other societal-scale risks such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI approximated that "80% of the U.S. workforce might have at least 10% of their work tasks affected by the intro of LLMs, while around 19% of workers might see a minimum of 50% of their tasks affected". [166] [167] They think about office employees to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI could have a better autonomy, capability to make decisions, to user interface with other computer tools, but also to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the quality of life will depend upon how the wealth will be rearranged: [142]
Everyone can enjoy a life of glamorous leisure if the machine-produced wealth is shared, or many people can end up badly bad if the machine-owners successfully lobby against wealth redistribution. So far, the trend appears to be towards the 2nd option, with technology driving ever-increasing inequality
Elon Musk considers that the automation of society will require governments to adopt a universal standard earnings. [168]
See also
Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain AI effect AI safety - Research area on making AI safe and helpful AI alignment - AI conformance to the designated goal A.I. Rising - 2018 movie directed by Lazar Bodroža Artificial intelligence Automated artificial intelligence - Process of automating the application of artificial intelligence BRAIN Initiative - Collaborative public-private research study effort revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General game playing - Ability of expert system to play various games Generative expert system - AI system efficient in generating material in action to triggers Human Brain Project - Scientific research task Intelligence amplification - Use of infotech to augment human intelligence (IA). Machine principles - Moral behaviours of man-made machines. Moravec's paradox. Multi-task learning - Solving several maker discovering tasks at the same time. Neural scaling law - Statistical law in artificial intelligence. Outline of expert system - Overview of and topical guide to expert system. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or type of artificial intelligence. Transfer knowing - Machine learning technique. Loebner Prize - Annual AI competitors. Hardware for expert system - Hardware specifically designed and enhanced for artificial intelligence. Weak expert system - Form of expert system.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the short article Chinese room. ^ AI founder John McCarthy writes: "we can not yet characterize in general what sort of computational procedures we desire to call smart. " [26] (For a discussion of some definitions of intelligence utilized by artificial intelligence researchers, see philosophy of artificial intelligence.). ^ The Lighthill report particularly slammed AI's "grand objectives" and led the dismantling of AI research study in England. [55] In the U.S., DARPA became determined to money only "mission-oriented direct research, instead of basic undirected research". [56] [57] ^ As AI creator John McCarthy composes "it would be an excellent relief to the rest of the employees in AI if the inventors of new basic formalisms would express their hopes in a more safeguarded form than has often been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As defined in a basic AI book: "The assertion that machines could possibly act wisely (or, perhaps much better, act as if they were smart) is called the 'weak AI' hypothesis by thinkers, and the assertion that machines that do so are really believing (instead of mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to perform a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to guarantee that artificial general intelligence advantages all of humankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new objective is developing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were recognized as being active in 2020. ^ a b c "AI timelines: trademarketclassifieds.com What do specialists in artificial intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton stops Google and alerts of threat ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can avoid the bad stars from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change modifications you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The genuine threat is not AI itself but the way we release it. ^ "Impressed by expert system? Experts state AGI is following, and it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could pose existential dangers to mankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last invention that humankind needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the risk of extinction from AI must be a worldwide concern. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts warn of risk of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from producing devices that can outthink us in general ways. ^ LeCun, Yann (June 2023). "AGI does not provide an existential danger". Medium. There is no reason to fear AI as an existential danger. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "device intelligence with the complete series of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is transforming our world - it is on everybody to make sure that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of smart characteristics is based upon the topics covered by significant AI books, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The idea of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reassessed: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine young boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists dispute whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar examination to AP Biology. Here's a list of challenging exams both AI variations have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's ability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software application engineers avoided the term artificial intelligence for worry of being deemed wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of machine intelligence: Despite progress in device intelligence, wiki.snooze-hotelsoftware.de synthetic basic intelligence is still a significant obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not become a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us paradise or destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future development in expert system: A study of expert viewpoint. In Fundamental problems of synthetic intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: fishtanklive.wiki OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as wise as Siri - but a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're going into the AI twilight zone between narrow and basic AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are already seeing an early example of an AGI system in the just recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is debatable, but the consensus is that it is not AGI. ... If absolutely nothing else, GPT-3 informs us there is a happy medium in between narrow and basic AI. ^ Quach, Katyanna. "A designer constructed an AI chatbot using GPT-3 that assisted a male speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can perform over 600 tasks, from playing games to managing robotics", TechCrunch, archived from the initial on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could measure up to human intelligence in 'simply a few years,' says CEO of Google's main A.I. research lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody appears to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A wide variety of views in existing research study, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer system might become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (estimated in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (estimated in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for curiosity by the field about why a program acts the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the business's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense exceed benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Gain from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, dangers, techniques (Reprinted with corrections 2017 ed.). Oxford, UK; New York City, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that human beings will ruin ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security risk' to Australia, Senate inquiry states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the implications of artificial intelligence - however are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The interesting Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI risk: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report alerts". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over danger postured but expert system can not be overlooked". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring worries over AI, warn scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder states big tech is lying about AI termination risk". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early appearance at the labor market effect capacity of big language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of employees could see their tasks impacted by AI. These are the tasks most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we need universal basic income due to the fact that 'in the future, manual labor will be a choice'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Look For Artificial Intelligence. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic general intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, retrieved 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Perspective, archived from the original on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Artificial Intelligence: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The supreme effort is to make computer programs that can resolve problems and achieve objectives worldwide along with humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer system hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, retrieved 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Expert System", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Logical Approach, New York City: Oxford University Press, archived from the initial on 25 July 2009, retrieved 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, retrieved 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, recovered 4 September 2013 - by means of ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, recovered 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what may be called "Dyson's Law") that "Any system basic enough to be reasonable will not be complicated enough to behave wisely, while any system complicated enough to act wisely will be too made complex to comprehend." (p. 197.) Computer researcher Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead easy stupid. They work, however they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Will" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what distinguishes us from machines. For biological animals, reason and function originate from acting on the planet and experiencing the repercussions. Artificial intelligences - disembodied, complete strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically expect that those who want to get abundant from AI are going to have the interests of the rest of us close at heart,' ... composes [Gary Marcus] 'We can't depend on federal governments driven by campaign financing contributions [from tech business] to press back.' ... Marcus information the demands that citizens need to make of their governments and the tech companies. They include openness on how AI systems work; settlement for people if their data [are] utilized to train LLMs (large language design) s and the right to grant this use; and the ability to hold tech business liable for the harms they trigger by eliminating Section 230, imposing money penalites, and passing stricter item liability laws ... Marcus likewise recommends ... that a brand-new, AI-specific federal firm, comparable to the FDA, the FCC, or the FTC, might supply the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... recommends ... establish [ing] a professional licensing regime for engineers that would function in a comparable method to medical licenses, malpractice fits, and the Hippocratic oath in medicine. 'What if, like physicians,' she asks ..., 'AI engineers also swore to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has stumped people for decades, reveals the restrictions of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competition has actually exposed that although NLP (natural-language processing) models can extraordinary accomplishments, their abilities are extremely much restricted by the quantity of context they get. This [...] could cause [problems] for scientists who want to use them to do things such as evaluate ancient languages. In many cases, there are few historical records on long-gone civilizations to work as training information for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to generate fake videos equivalent from real ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we suggest sensible videos produced using synthetic intelligence that in fact deceive individuals, then they hardly exist. The phonies aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in general, running in our media as counterfeited evidence. Their role much better resembles that of animations, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We must avoid humanizing machine-learning designs used in clinical research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a machine a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: it-viking.ch Even the latest, buzziest systems of synthetic general intelligence are stymmied by the exact same old issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, obtained 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, provided and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead cops to ignore contradictory evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but showed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at jobs that require genuine humanlike reasoning or an understanding of the physical and social world ... ChatGPT appeared unable to factor realistically and attempted to depend on its huge database of ... truths derived from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are effective however undependable. Rules-based systems can not handle situations their developers did not prepare for. Learning systems are restricted by the data on which they were trained. AI failures have actually currently caused disaster. Advanced autopilot features in cars and trucks, although they perform well in some scenarios, have driven vehicles without alerting into trucks, concrete barriers, and parked cars and trucks. In the wrong scenario, AI systems go from supersmart to superdumb in an instant. When an enemy is attempting to manipulate and hack an AI system, the threats are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by brand-new technologies however rely on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.